What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

= N Q

. 4

BLOG TECH ' Scott van Kalken of F5 July 21, 2021

What Are Namespaces and cgroups, and How
Do They Work?

& containers, Kubernetes, NGINX Unit, application isolation, process isolation, cgroups

Recently, | have been investigating NGINX Unit, our open source multi-language application
server. As part of my investigation, | noticed that Unit supports both namespaces and cgroups,
which enables process isolation. In this blog, we'll look at these two major Linux technologies,

which also underlie containers.

Containers and associated tools like Docker and Kubernetes have been around for some time
now. They have helped to change how software is developed and delivered in modern
application environments. Containers make it possible to quickly deploy and run each piece of
software in its own segregated environment, without the need to build individual virtual

machines (VMs).

Most people probably give little thought to how containers work under the covers, but | think it's
important to understand the underlying technologies — it helps to inform our decision-making
processes. And personally, fully understanding how something works just makes me happy!

What Are Namespaces?

Namespaces have been part of the Linux kernel since about 2002, and over time more tooling
and namespace types have been added. Real container support was added to the Linux kernel
only in 2013, however. This is what made namespaces really useful and brought them to the

masses.
But what are namespaces exactly? Here's a wordy definition from Wikipedia:

‘Namespaces are a feature of the Linux kernel that partitions kernel resources such that one
set of processes sees one set of resources while another set of processes sees a different set

of resources.”

In other words, the key feature of namespaces is that they isolate processes from each other.
On a server where you are running many different services, isolating each service and its
associated processes from other services means that there is a smaller blast radius for
changes, as well as a smaller footprint for security-related concerns. Mostly though, isolating

services meets the architectural style of microservices as described by Martin Fowler.

Using containers during the development process gives the developer an isolated environment
that looks and feels like a complete VM. It's not a VM, though — it's a process running on a server
somewhere. If the developer starts two containers, there are two processes running on a single

server somewhere — but they are isolated from each other.

Types of Namespaces

Within the Linux kernel, there are different types of namespaces. Each namespace has its own

unique properties:

1 of 7 6/8/21, 8:38 pm

What Are Namespaces and cgroups, and How Do ...

20f7

N

A process |D (PID) namespace assigns a set of PIDs to processes that are independent from the

having It In other user namespaces.

set of PIDs in other namespaces. The first process created in a new namespace has PID 1 and
child processes are assigned subsequent PIDs. If a child process is created with its own PID
namespace, it has PID 1 in that namespace as well as its PID in the parent process’ namespace.

See below for an example.

A network namespace has an independent network stack: its own private routing table, set of IP

addresses, socket listing, connection tracking table, firewall, and other network-related resources.

A mount namespace has an independent list of mount points seen by the processes in the
namespace. This means that you can mount and unmount filesystems in a mount namespace

without affecting the host filesystem.

An interprocess communication (IPC)_namespace has its own IPC resources, for example POSIX

message gueues.

A UNIX Time-Sharing (UTS) namespace allows a single system to appear to have different host

and domain names to different processes.

An Example of Parent and Child PID Namespaces

In the diagram below, there are three PID namespaces — a parent namespace and two child

namespaces. Within the parent namespace, there are four processes, named PID1 through

PID4. These are normal processes which can all see each other and share resources.

The child processes with PID2 and PID3 in the parent namespace also belong to their own PID

namespaces in which their PID is 1. From within a child namespace, the PID1 process cannot

see anything outside. For example, PID1 in both child namespaces cannot see PID4 in the

parent namespace.

This provides isolation between (in this case) processes within different namespaces.

~
PID namespace 1 (parent)
[Outside child namespace
Inside child namespace Inside child namespace
PID namespace 2 (child) PID namespace 3 (child)
J

Creating a Namespace

With all that theory under our belts, let's cement our understanding by actually creating a new

namespace. The Linux unshare command is a good place to start. The manual page indicates

that it does exactly what we want:

NAME

unshare - run program in new name namespaces

https://www.nginx.com/blog/what-are-namespaces...

Q

6/8/21, 8:38 pm

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

(N Q

svk $
uid=1000(svk) gid=1000(svk) groups=1000(svk)
context=unconfined u:unconfined r:unconfined t:s0@-s0:c0.c.1023

Now | run the following unshare command to create a new namespace with its own user and
PID namespaces. | map the root user to the new namespace (in other words, | have root
privilege within the new namespace), mount a new proc filesystem, and fork my process (in this

case, bash) in the newly created namespace.

svk $

(For those of you familiar with containers, this accomplishes the same thing as issuing the

<runtime> exec -it <image> /bin/bash command in a running container.)

The ps -ef command shows there are two processes running — bash and the ps command
itself — and the 1d command confirms that I'm root in the new namespace (which is also

indicated by the changed command prompt):

root #

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 14:46 pts/0 00:00:00 bash
root 15 1 0 14:46 pts/0 00:00:00 ps -ef
root #

uid=0(root) gid=0(root) groups=0(root)
context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c.1023

The crucial thing to notice is that | can see only the two processes in my namespace, not any

other processes running on the system. | am completely isolated within my own namespace.

Looking at a Namespace from the Outside

Though | can't see other processes from within the namespace, with the Lsns (list
namespaces) command | can list all available namespaces and display information about them,

from the perspective of the parent namespace (outside the new namespace).

The output shows three namespaces — of types user, mnt, and pid — which correspond to the
arguments on the unshare command | ran above. From this external perspective, each
namespace is running as user svk, not root, whereas inside the namespace processes run as
root, with access to all of the expected resources. (The output is broken across two lines for
easier reading.)

3 of 7 6/8/21, 8:38 pm

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

—
= Q. Q
NS TYPE PATH NPROCS PID PPID ...
4026532690 user /proc/97964/ns/user 2 97964 97944 ...
4026532691 mnt /proc/97964/ns/mnt 2 97964 97944 ...
4026532692 pid /proc/97965/ns/pid 1 97965 97964 ...
. COMMAND
UID USER
. unshare --user --map-root-user --fork —pid --mount-proc bash
1000 svk
. unshare --user --map-root-user --fork —pid --mount-proc bash
1000 svk
. bash
1000 svk

Namespaces and Containers

Namespaces are one of the technologies that containers are built on, used to enforce

segregation of resources. We've shown how to create namespaces manually, but container

runtimes like Docker, rkt, and podman make things easier by creating namespaces on your
behalf. Similarly, the 1solation application object in NGINX Unit creates namespaces and

cgroups.

What Are cgroups?

A control group (cgroup) is a Linux kernel feature that limits, accounts for, and isolates the

resource usage (CPU, memory, disk I/0, network, and so on) of a collection of processes.
Cgroups provide the following features:

¢ Resource limits — You can configure a cgroup to limit how much of a particular resource (memory

or CPU, for example) a process can use.

e Prioritization — You can control how much of a resource (CPU, disk, or network) a process can use

compared to processes in another cgroup when there is resource contention.
e Accounting — Resource limits are monitored and reported at the cgroup level.

e Control - You can change the status (frozen, stopped, or restarted) of all processes in a cgroup

with a single command.

So basically you use cgroups to control how much of a given key resource (CPU, memory,
network, and disk I/0) can be accessed or used by a process or set of processes. Cgroups are a
key component of containers because there are often multiple processes running in a container
that you need to control together. In a Kubernetes environment, cgroups can be used to

implement resource requests and limits and corresponding QoS classes at the pod level.

The following diagram illustrates how when you allocate a particular percentage of available
system resources to a cgroup (in this case cgroup-1), the remaining percentage is available to
other cgroups (and individual processes) on the system.

cgroup-1
Memory CPU Network /0

4 of 7 6/8/21, 8:38 pm

What Are Namespaces and cgroups, and How Do ...

(NI Q

Jystern Kemainaer ATer Cgroup Alocauon
CPU Network 1/0

<

75% 75% 67% 50%

Cgroup Versions

According to Wikipedia, the first version of cgroups was merged into the Linux kernel mainline in
late 2007 or early 2008, and “the documentation of cgroups-v2 first appeared in [the] Linux
kernel ... [in] 2016". Among the many changes in version 2, the big ones are a much simplified
tree architecture, new features and interfaces in the cgroup hierarchy, and better
accommodation of “rootless” containers (with non-zero UIDs).

My favorite new interface in v2 is for pressure stall information (PSI). It provides insight into

per-process memory use and allocation in a much more granular way than was previously

possible (this is beyond the scope of this blog, but is a very cool topic).

Creating a cgroup

The following command creates a v1 cgroup (you can tell by pathname format) called foo and
sets the memory limit for it to 50,000,000 bytes (50 MB).

root #
root #

Now | can assign a process to the cgroup, thus imposing the cgroup’s memory limit on it. I've
written a shell script called test. sh, which prints cgroup testing tool to the screen, and

then waits doing nothing. For my purposes, it is a process that continues to run until | stop it.

| start test. shin the background and its PID is reported as 2428. The script produces its
output and then | assign the process to the cgroup by piping its PID into the cgroup file /sys/fs

/cgroup/memory/foo/cgroup.procs.

root #

[1] 2428

root # cgroup testing tool
root #

To validate that my process is in fact subject to the memory limits that | defined for cgroup foo,
I run the following ps command. The -0 cgroup flag displays the cgroups to which the
specified process (2428) belongs. The output confirms that its memory cgroup is foo.

https://www.nginx.com/blog/what-are-namespaces...

6/8/21, 8:38 pm

What Are Namespaces and cgroups, and How Do ...

6 of 7

CGROUP
12:pids:/user.slice/user-0.slice/\
session-13.scope,10:devices:/user.slice, A

By default, the operating system terminates a process when it exceeds a resource limit defined

by its cgroup.

Conclusion

Namespaces and cgroups are the building blocks for containers and modern applications.
Having an understanding of how they work is important as we refactor applications to more

modern architectures.

Namespaces provide isolation of system resources, and cgroups allow for fine-grained control

and enforcement of limits for those resources.

Containers are not the only way that you can use namespaces and cgroups. Namespaces and
cgroup interfaces are built into the Linux kernel, which means that other applications can use

them to provide separation and resource constraints.

Learn more about NGINX Unit and download the source to try it for yourself.

MICROSERVICES

From Design to Deployment

Microservices: From Design to
Deployment

The complete guide to microservices development

DOWNLOAD NOW

https://www.nginx.com/blog/what-are-namespaces...

Q

6/8/21, 8:38 pm

What Are Namespaces and cgroups, and How Do ...

7 of 7

https://www.nginx.com/blog/what-are-namespaces...

NGINX Controller

NGINX Instance Manager
NGINX App Protect
NGINX Service Mesh
NGINX Unit

NGINX Amplify.

F5 DNS Cloud Services

NGINX on Github v
NGINX Open Source
NGINX Unit

NGINX Amplify.

NGINX Kubernetes Ingress

Controller

NGINX Microservices
Reference Architecture

NGINX Crossplane

Connect With Us

EOME N

STAY IN THE LOOP

Microservices
Cloud
Security

Web & Mobile Performance

Ebooks
Webinars
Datasheets

Success Stories

API Managerment

Blog
EAQ
Learn

Glossary,

Support v

Professional Services

Training

Customer Portal Login

Google Cloud Platform
1BM

Microsoft Azure

Red Hat

Find a Partner

Certified Module Program

Company v
About F5 NGINX
Careers
Leadership
Press

Events

ES

Shape Security

Volterra

= N aQ
NGINX PLUS FREE TRIAL NGINX CONTROLLER FREE TRIAL
ASK US A QUESTION
Products v Solutions v Resources v Partners v
NGINX Plus ADC / Load Balancing Documentation Amazon Web Services

6/8/21, 8:38 pm

