
Scott van Kalken of F5 July 21, 2021

What Are Namespaces and cgroups, and How
Do They Work?

containers, Kubernetes, NGINX Unit, application isolation, process isolation, cgroups

Types of Namespaces

What Are Namespaces?

Recently, I have been investigating NGINX Unit, our open source multi-language application

server. As part of my investigation, I noticed that Unit supports both namespaces and cgroups,

which enables process isolation. In this blog, we’ll look at these two major Linux technologies,

which also underlie containers.

Containers and associated tools like Docker and Kubernetes have been around for some time

now. They have helped to change how software is developed and delivered in modern

application environments. Containers make it possible to quickly deploy and run each piece of

software in its own segregated environment, without the need to build individual virtual

machines (VMs).

Most people probably give little thought to how containers work under the covers, but I think it’s

important to understand the underlying technologies – it helps to inform our decision‑making

processes. And personally, fully understanding how something works just makes me happy!

Namespaces have been part of the Linux kernel since about 2002, and over time more tooling

and namespace types have been added. Real container support was added to the Linux kernel

only in 2013, however. This is what made namespaces really useful and brought them to the

masses.

But what are namespaces exactly? Here’s a wordy definition from Wikipedia:

“Namespaces are a feature of the Linux kernel that partitions kernel resources such that one

set of processes sees one set of resources while another set of processes sees a different set

of resources.”

In other words, the key feature of namespaces is that they isolate processes from each other.

On a server where you are running many different services, isolating each service and its

associated processes from other services means that there is a smaller blast radius for

changes, as well as a smaller footprint for security‑related concerns. Mostly though, isolating

services meets the architectural style of microservices as described by Martin Fowler.

Using containers during the development process gives the developer an isolated environment

that looks and feels like a complete VM. It’s not a VM, though – it’s a process running on a server

somewhere. If the developer starts two containers, there are two processes running on a single

server somewhere – but they are isolated from each other.

Within the Linux kernel, there are different types of namespaces. Each namespace has its own

unique properties:

BLOG TECH

k S
Search nginx.com

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

1 of 7 6/8/21, 8:38 pm

An Example of Parent and Child PID Namespaces

Creating a Namespace

having it in other user namespaces.

A process ID (PID) namespace assigns a set of PIDs to processes that are independent from the

set of PIDs in other namespaces. The first process created in a new namespace has PID 1 and

child processes are assigned subsequent PIDs. If a child process is created with its own PID

namespace, it has PID 1 in that namespace as well as its PID in the parent process’ namespace.

See below for an example.

A network namespace has an independent network stack: its own private routing table, set of IP

addresses, socket listing, connection tracking table, firewall, and other network‑related resources.

A mount namespace has an independent list of mount points seen by the processes in the

namespace. This means that you can mount and unmount filesystems in a mount namespace

without affecting the host filesystem.

An interprocess communication (IPC) namespace has its own IPC resources, for example POSIX

message queues.

A UNIX Time‑Sharing (UTS) namespace allows a single system to appear to have different host

and domain names to different processes.

In the diagram below, there are three PID namespaces – a parent namespace and two child

namespaces. Within the parent namespace, there are four processes, named PID1 through

PID4. These are normal processes which can all see each other and share resources.

The child processes with PID2 and PID3 in the parent namespace also belong to their own PID

namespaces in which their PID is 1. From within a child namespace, the PID1 process cannot

see anything outside. For example, PID1 in both child namespaces cannot see PID4 in the

parent namespace.

This provides isolation between (in this case) processes within different namespaces.

With all that theory under our belts, let’s cement our understanding by actually creating a new

namespace. The Linux unshare command is a good place to start. The manual page indicates

that it does exactly what we want:

NAME
 unshare - run program in new name namespaces

k S

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

2 of 7 6/8/21, 8:38 pm

Looking at a Namespace from the Outside

I’m currently logged in a svk, which has its own user

not root privileges:

svk $ id
uid=1000(svk) gid=1000(svk) groups=1000(svk)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c.1023

Now I run the following unshare command to create a new namespace with its own user and

PID namespaces. I map the root user to the new namespace (in other words, I have root

privilege within the new namespace), mount a new proc filesystem, and fork my process (in this

case, bash) in the newly created namespace.

svk $ unshare --user --pid --map-root-user --mount-proc --fork
bash

(For those of you familiar with containers, this accomplishes the same thing as issuing the

<runtime> exec -it <image> /bin/bash command in a running container.)

The ps -ef command shows there are two processes running – bash and the ps command

itself – and the id command confirms that I’m root in the new namespace (which is also

indicated by the changed command prompt):

root # ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 14:46 pts/0 00:00:00 bash
root 15 1 0 14:46 pts/0 00:00:00 ps -ef
root # id
uid=0(root) gid=0(root) groups=0(root)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c.1023

The crucial thing to notice is that I can see only the two processes in my namespace, not any

other processes running on the system. I am completely isolated within my own namespace.

Though I can’t see other processes from within the namespace, with the lsns (list

namespaces) command I can list all available namespaces and display information about them,

from the perspective of the parent namespace (outside the new namespace).

The output shows three namespaces – of types user, mnt, and pid – which correspond to the

arguments on the unshare command I ran above. From this external perspective, each

namespace is running as user svk, not root, whereas inside the namespace processes run as

root, with access to all of the expected resources. (The output is broken across two lines for

easier reading.)

k S

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

3 of 7 6/8/21, 8:38 pm

Namespaces and Containers

What Are cgroups?

 NS TYPE PATH NPROCS PID PPID ...
4026532690 user /proc/97964/ns/user 2 97964 97944 ...
4026532691 mnt /proc/97964/ns/mnt 2 97964 97944 ...
4026532692 pid /proc/97965/ns/pid 1 97965 97964 ...

 ... COMMAND
UID USER
 ... unshare --user --map-root-user --fork –pid --mount-proc bash
1000 svk
 ... unshare --user --map-root-user --fork –pid --mount-proc bash
1000 svk
 ... bash
1000 svk

Namespaces are one of the technologies that containers are built on, used to enforce

segregation of resources. We’ve shown how to create namespaces manually, but container

runtimes like Docker, rkt, and podman make things easier by creating namespaces on your

behalf. Similarly, the isolation application object in NGINX Unit creates namespaces and

cgroups.

A control group (cgroup) is a Linux kernel feature that limits, accounts for, and isolates the

resource usage (CPU, memory, disk I/O, network, and so on) of a collection of processes.

Cgroups provide the following features:

Resource limits – You can configure a cgroup to limit how much of a particular resource (memory

or CPU, for example) a process can use.

Prioritization – You can control how much of a resource (CPU, disk, or network) a process can use

compared to processes in another cgroup when there is resource contention.

Accounting – Resource limits are monitored and reported at the cgroup level.

Control – You can change the status (frozen, stopped, or restarted) of all processes in a cgroup

with a single command.

So basically you use cgroups to control how much of a given key resource (CPU, memory,

network, and disk I/O) can be accessed or used by a process or set of processes. Cgroups are a

key component of containers because there are often multiple processes running in a container

that you need to control together. In a Kubernetes environment, cgroups can be used to

implement resource requests and limits and corresponding QoS classes at the pod level.

The following diagram illustrates how when you allocate a particular percentage of available

system resources to a cgroup (in this case cgroup‑1), the remaining percentage is available to

other cgroups (and individual processes) on the system.

k S

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

4 of 7 6/8/21, 8:38 pm

Cgroup Versions

Creating a cgroup

According to Wikipedia, the first version of cgroups was merged into the Linux kernel mainline in

late 2007 or early 2008, and “the documentation of cgroups‑v2 first appeared in [the] Linux

kernel … [in] 2016”. Among the many changes in version 2, the big ones are a much simplified

tree architecture, new features and interfaces in the cgroup hierarchy, and better

accommodation of “rootless” containers (with non‑zero UIDs).

My favorite new interface in v2 is for pressure stall information (PSI). It provides insight into

per‑process memory use and allocation in a much more granular way than was previously

possible (this is beyond the scope of this blog, but is a very cool topic).

The following command creates a v1 cgroup (you can tell by pathname format) called foo and

sets the memory limit for it to 50,000,000 bytes (50 MB).

root # mkdir -p /sys/fs/cgroup/memory/foo
root # echo 50000000 > /sys/fs/cgroup/memory
/foo/memory.limit_in_bytes

Now I can assign a process to the cgroup, thus imposing the cgroup’s memory limit on it. I’ve

written a shell script called test.sh, which prints cgroup testing tool to the screen, and

then waits doing nothing. For my purposes, it is a process that continues to run until I stop it.

I start test.sh in the background and its PID is reported as 2428. The script produces its

output and then I assign the process to the cgroup by piping its PID into the cgroup file /sys/fs

/cgroup/memory/foo/cgroup.procs.

root # ./test.sh &
[1] 2428
root # cgroup testing tool
root # echo 2428 > /sys/fs/cgroup/memory/foo/cgroup.procs

To validate that my process is in fact subject to the memory limits that I defined for cgroup foo,

I run the following ps command. The -o cgroup flag displays the cgroups to which the

specified process (2428) belongs. The output confirms that its memory cgroup is foo.

k S

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

5 of 7 6/8/21, 8:38 pm

Conclusion

Microservices: From Design to
Deployment

DOWNLOAD NOW

CGROUP
12:pids:/user.slice/user-0.slice/\
session-13.scope,10:devices:/user.slice,6:memory:/foo,...

By default, the operating system terminates a process when it exceeds a resource limit defined

by its cgroup.

Namespaces and cgroups are the building blocks for containers and modern applications.

Having an understanding of how they work is important as we refactor applications to more

modern architectures.

Namespaces provide isolation of system resources, and cgroups allow for fine‑grained control

and enforcement of limits for those resources.

Containers are not the only way that you can use namespaces and cgroups. Namespaces and

cgroup interfaces are built into the Linux kernel, which means that other applications can use

them to provide separation and resource constraints.

Learn more about NGINX Unit and download the source to try it for yourself.

The complete guide to microservices development

k S

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

6 of 7 6/8/21, 8:38 pm

0 Comments NGINX 🔒 Disqus' Privacy Policy Login1

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQ

Name

?

Be the first to comment.

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Do Not Sell My Data⚠

Recommend

NGINX PLUS FREE TRIAL NGINX CONTROLLER FREE TRIAL

ASK US A QUESTION

Connect With Us

STAY IN THE LOOP

Products3

NGINX on Github3

NGINX Plus

NGINX Controller

NGINX Instance Manager

NGINX App Protect

NGINX Service Mesh

NGINX Unit

NGINX Amplify

F5 DNS Cloud Services

NGINX Open Source

NGINX Unit

NGINX Amplify

NGINX Kubernetes Ingress
Controller

NGINX Microservices
Reference Architecture

NGINX Crossplane

Solutions3

ADC / Load Balancing

Microservices

Cloud

Security

Web & Mobile Performance

API Management

Resources3

Support3

Documentation

Ebooks

Webinars

Datasheets

Success Stories

Blog

FAQ

Learn

Glossary

Professional Services

Training

Customer Portal Login

Partners3

Company3

Amazon Web Services

Google Cloud Platform

IBM

Microsoft Azure

Red Hat

Find a Partner

Certified Module Program

About F5 NGINX

Careers

Leadership

Press

Events

F5

Shape Security

Volterra

F T L R

k S

What Are Namespaces and cgroups, and How Do ... https://www.nginx.com/blog/what-are-namespaces...

7 of 7 6/8/21, 8:38 pm

